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PERTURBATION THEORY FOR LINEAR ELECTROELASTIC EQUATIONS
FOR SMALL FIELDS SUPERPOSED ON A BIAS

H.F. Tiersten
Department of Mechanical Engineering,
Aeronautical Engineering & Mechanics
Rensselaer Polytechnic Institute
Troy, New York 12181

ABSTRACT

A perturbation formulation of the equations of linear piezoelectricity
for small fields superposed on a bias is obtained from a Green's function
representation. It is shown that the resulting equation for the first per-
turbation of the eigenvalue may be obtained without the use of a Green's
tensor or a complete set of orthogonal eigensolutions. Since the bias enters
the constitutive equations, the boundary conditions contain perturbation terms
as well as the differential equations. The linear electroelastic equations
for small fields superposed on a bias differ from the equations of linear
piezoelectricity because the effective material constants of linear electro-
elasticity have less symmetry than the constants of linear piezoelectricity.
Consequently, a perturbation formulation of the linear electroelastic equa-
tions for small fields superposed on a bias is presented. It is shown that
the effective constants of linear electroelasticity have just the symmetry
required for the condition of the orthogonality of linear electroelastic

vibrations to hold.
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1. Introduction

In vibrating piezoelectric solids small changes in such things as natural
frequency and small values of attenuation arising from a variety of causes may
readily and conveniently be determined from a perturbation formulationl-a of the
equations of linear piezoelectricity by employing the equation for the first
perturbation of the eigenvalue. Thig fact is well known and widely appreciated.
The small effects may be due to such things as material viscosity, air loading
of the surface, mass loading and stiffening of the surface due to the presence
of a thin surface film, the electrical conductivity of the film and biasing
stresses, strains and electric fields, which either may be applied or a conse-
quence of such things as changes in temperature. Although the linear piezoelec-
tric equations may readily be employed in the treatment of most of the above-
mentioned phenomena, they are invalid when the above-mentioned biasing states
are present because the linear piezoelectric equations are not equivalent to
the linear electroelastic equations for small fields superposed on a bias4. The
basic reason for this is that although the linear piezoelectric equations are
the appropriate linear limit of the properly invariant nonlinear electroelastic
equationss, they are not the appropriate linear limit of the properly invariant
nonlinear electroelastic equations for small fields superposed on a bias.

In this paper perturbations from solutions of the linear piezoelectric
equations due to the above-mentioned biasing states are treated by means of the
aforementioned linear electroelastic equations for small fields superposed on a
bias. 1In the treatment the equations are written as the linear piezoelectric
equations plus the additional terms arising from the bias, and a piezoelectric
perturbation theory is obtained from a Green's function formdlation of the

equations of linear piezoelectricity. The derivation is identical with that

given in a recent workz, but the perturbation terms are different and only

G




perturbations due to biasing states are considered. The small effects due

to the aforementioned other phenomena are expressly not considered here, but
the inclusion of them would be straightforward and may readily be accomplished
after the fact. The resulting equation for the first perturbation of the
eigenvalue, which is also obtained in a completely independent manner withouc
assuming the existence of a complete set of orthogonal eigensolutions, may
readily be applied in the determination of small changes in natural frequen-
cies of vibrating piezoelectric solids subject to various biasing states.
Indeed, the perturbation equation has already been applied6 in the calculation
of the change in velocity of piezoelectric surface waves on Y-cut, Z-propa-
gating lithium niobate subject to uniaxial biasing stresses. The results of
the perturbation calculation agree so well with complete calculations performed
for the same case that it may be concluded that the perturbation procedure is
every bit as accurate as the complete calculation for the determination of
such quantities. 1In fact, since the perturbation procedure can readily treat
spatially varying biasing states, for which a complete calculation cannot be
performed, it has a significant advantage over a complete calculation in the
determination of this type of quantity.

Since it is possible for perturbations to arise from the above-mentioned
other phenomena even when a biasing state is present and the piezoelectric
perturbation theory is invalid under such circumstances, an electroelastic
perturbation theory is obtained from a Green's function formulation of the
linear electroelastic equations for small fields superposed on a bias. This
treatment differs from the previous one in that the terms arising from the bias
are included in the basic equations that must be satisfied, éather than as a

perturbation from the linear piezoelectric equations. 1In this linear electro-

elastic case the effective material constants have less symmetry than in the




linear piezoelectric case, but they have just the symmetry required for the
orthogonality theorem for linear electroelastic vibrations superposed on a bias,
which we need for our perturbation theory, and, of course, the related theorems
of reciprocity and uniqueness. The resulting equation for the first perturba-
tion of the eigenvalue may readily be applied in the determination of small
changes in natural frequency and phase velocity and small values of attenuation
of vibrating biased electroelastic solutions, which arise from what we have

termed other phenomena.

2. Linear Electroelastic Equations for Small Fields Superposed on a Bias

Before presenting the equations we briefly introduce some preliminary

termirology and notation. We first note that under the static bias the material

points move from the reference coordinates X, to the intermediate coordinates §a,

and we have

Ea & §Q(XL) . (2.1)

Then in the superposed small dynamic motion the material points move from the

intermediate coordinates §a to the present coordinates Y, and we have

¥ e e e F ) (2.2)

We consistently use the convention that capital Latin indices, lower case
Greek indices and lower case Latin indices, respectively, refer to the
Cartesian components of the reference coordinates, intermediate coordinates
and present coordinates of material points. In this paper Cartesian tensor
notation is used exclusively. A comma followed by an index denotes partial

differentiation with respect to a geometric coordinate, i.e.,’




ey

ga,L 5 ago/axL’ xL,a i axL/aga’ Yi,a & ayi/aga :

Soyi =%/, Yyt WX, X o= XNy, 2:3)

and we employ the summation convention for repeated tensor indices and the dot

notation for differentiation with respect to time. Since the dynamic motion

is small, we may write

¥~ aia(ga + uB), (2.4)

where uB is the small mechanical displacement from the intermediate coordinate §B
to the present coordinate Y; and GiB is a Kronecker delta, which serves to
translate a vector from the present to the intermediate coordinates and vice
versa.

By virtue of (2.1) the small field dynamic equations may use either the
intermediate coordinates §a or the reference coordinates xL as independent
variables. Since in the typical situation it is undesirable to measure the
geometry each time the bias is varied, it is advantageous to use the X_ as
independent variables. Moreover, in *the applications envisaged although the

static biasing mechanical displacement wL of a material point is large compared

with uB, it is nevertheless small, and we may write
§a = OGL(XL + wL), (2.5)

where QZL is a Kronecker delta, which serves to translate a vector from the
intermediate to the reference coordinates and vice versa and is required for

notational consistency and clarity because of the use of different indices

to refer to the different coordinates of a material point. In accordance with

the foregoing the present electric potential at a material p&int may be

written
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Py, t) = &, E) =G X)) + P ,E), (2.6)

where @1 is the biasing electric potential at a material point and @ is the

small field dynamic electric potential at the same point.

Since we have used the reference coordinates xL as the independent variables
for material points, we take the XL rather than the ga as the independent
variables for points of free space not abutting a material boundary. Moreover,
since only the reference position of the material boundary is known, the value
of the electric potential | on the free space side of the present position of
the material boundary must be obtained by means of a Taylor expansion'about

its value at the known reference position of the material boundary in the

unknown mechanical displacement (wM + GBMuB) of the material boundary. Thus
byt =ty + v ¥ u + T W+ Vx t) (2.7)
i M ,L'L ,L BLB ,L' L B2

to first order in the small field variables, and where @1 is the biasing

electric potential immediately on the free space side of the reference position
x

of the material boundary and | is the small field dynamic electric potential

at the same point and for points of free space we have

Vo, = vt s Ve, . (2.8)

Now that the meaning of the basic dependent and independent variables
has been explained we are in a position to write the linear electroelastic

equations for small fields superposed on a bias, which take the form

(2.9)

where

~ X
Ky = Srweto,m * S, m
b 4 x

ﬁi = fLMaua,M + ngw’M, (2.10)
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and we have taken the liberty of changing the order of the last two indices on
the second and third rank tensors having both Latin and Greek indices from that
employed in Ref.4. Equations (2.9) are the small field stress equations of
motion and charge equation of electrostatics referred to the reference coordi-
nates xL' Equations (2.10) are the linear electiroelastic constitutive equations
and Egs. (2.11) and (2.12) contain the definitions of the effective coefficients
defined therein. 1In (2.9) - (2.13) iLY and Et denote the components of the

small field Piola-Kirchhoff stress tensor, which is asymmetric, and reference
electric displacement vector4, respectively; Po denotes the reference mass
density, gLYlda’ eMLY and €M denote the second order elastic, piezoelectric

and dielectric constants, respectively, which are the constants that occur in

the ordinary linear theory of piezoelectrisnity. The symbols T;M and E:B denote

the components of the static biasing stress and strain, respectively, and
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Jl is the Jacobian of the static deformation. The biasing variables satisfy the

.
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appropriate static equations given in (66) - (72) of Ref.4, or the equivalent
equations using reference coordinates as independent variables. Since we are

interested in small biasing strains only, we have

g Loy 1
e T ety T T 200
1 O
= + 5
Tom = Simrs“R,s * Crum® m Gera

i .13 d b 5 .
and each XL,Q in (2.13) may be replaced by 6La In (2.12) gLYndomB’ b o5

§ and %MLNBC denote the third-order elastic, electros=rictive, third-order

electric permeability and first-order electroelastic cor stants, respectively,
and eo denotes the electric permittivity of free space. For obvious reasons :
the notation employed here is designed to be consistent with the notation of

Ref.4. The karets over many variables have been employed here because we con- E

sistently use the reference coordinates as independent variables.
To the foregoing equations we must adjoin the dynamic boundary conditions,

which when the boundary of the body abuts free space take the form

~ ’\lf —__ it =
N (K, - K) = T, » N, O ﬁL) =0,

x> Al o
= S u, + w_ o+
? ¢,L BL B W,LL

<

(2.16)

where wL and uB in (2.16)3, respectively, denote the static biasing and small
field dynamic components of the mechanical displacement at the surface of the
solid, N denotes the components of the unit normal to the reference position
of the surface and EY is an applied traction per unit reference area. The

free-space dynamic variables E{Y and 3§ are given by
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= 8
gLMY g xL,axM,Beo(Ea v8 ~ Egve)
R: =JX : (2.18)
1LB
In free-space the small field dynamic electric potential clearly satisfies
Laplace's equation4, i.e.,

(2.19)

When the body abuts another solid insulator rather than free-space, instead of

(2.16) we must have

L el

1f, on the other hand, the body abuts a perfect conductor, we have

~

NIKJ =0, NIh1=2, 9=7, (2.21)
where Ei in the conductor vanishes, ELY in the conductor is not given by (2.10),
is purely mechanical and depends on the particular case treated and z_is the
dynamic electric surface charge density per unit reference area. In the usual
case of interest ¢ will be prescribed and (2.21)2 will determine the surface

charge density a posteriori.




3. Perturbations from Piezoelectric Solutions

In this section we obtain the equations for perturbations from solutions of
the linear piezoelectric equations due to a bias from a Green's function formu-
lation2 of the equations of linear piezoelectricity. To this end we first
write Egs. (2.9) - (2.12) in the form

~L ~n o..
K =
iyt e m Py
~8 s
ﬁL,L i) 'anL,L'O’

=c + r
v T Spymoa,m t o Cvr, M2

Sae o a2
L~ “wom T Sv® Mo
~Nn - "~ :

Ty T CLymde,m * Smy?, u

n N ~ ~
Ei = Snlo,u ~ 1 (3.4)

~

where the nonlinear terms iﬁy and 32 are the perturbation terms which depend

A,B

on the biasing state w and ¢1M in accordance with (2.12) and (2.14)1.
$ g )

) ~n - s . .
Since KLY and Jﬁ are the perturbation terms, we are perturbing from the linear
piezoelectric equations and, hence, the equations for the Green's tensor2 may

be written in the form

~ Loy 2 @ o
o e Al §(-9)6, ,
ooy 12 A7 o
'D‘L,L b(r-Q)6, ,
~ lov o o
= c G + e £
v = Suyme C,M MLY ,M’
o o

e G -¢_ f

MG C,M LM ,M° i

where the superscripts @, B = 1-4, P and Q denote the fixed field point and
variable source point, respectively, 6 is the Dirac delta funétion, 6: is the
Kronecker delta, Gz and £ are the mechanical displacement Green's tensor and

electric potential Green's function plus cross terms, respectively. In
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iwt

(3.5) - (3.7) we have assumed that all variables have a time dependence of e ,

which has been factored out,6and we make the
Equations (3.1) - (3.3) and (3.5) - (3.7) are
(2.4) - (2.6) of Ref.2, except for notation.
Sec.2 of Ref.2 applies here without change.

identical with the one employed in Sec.2 of

same assumptions in (3.1) - (3.4).
identical with Egs. (2.1) - (2.3) and
Consequently, except for notation,
Thus, by following a procedure

Ref.2, from Eq. (2.16) of Ref.2 with

the change in notation we may write

q‘f((P)

u =3 ————

~4 o ~fn _R
[g N (R 9 @ - u @) + B © -6l @105, (@) +
o

a (wi % wz)
+$ R dro + 5 Fonw o], 3.8)
o
where uh is the eigenfrequency of the uth eigensolution and
Ji'{=u}:/Nm), ’f“‘=$’/um, 3.9)

in which ui and &R denote the pth eigensolution functions satisfying (3.1) and
(3.2) in the absence of EEY and Ei and subject to the appropriate homogeneous

; 7
boundary conditions and N may be found from

®)

2

, 3.
¥u)Suy S

I v -
J podtuv .

o}

g}L

i f

and " denote orthonormal eigensolutions of the appropriate homogeneous problem.

which is the orthogonality condition for piezoelectric vibrations. Thus,

In (3.8) §° denotes the reference surface area enclosing the reference volume V6

and
% emvf?m ’

e

IM M

d,

=C
Y LYMu'u, M

o

1
kL

d: =e (3.11)

LMt H, M
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F* We may now obtain the perturbation procedure from (3.8) in the usual way 5
: i.e., by letting uY(P) be very near one of the gﬂ% say gs. Then we may write

£y (3.12)

b

F M i 2
: u, =g @ +néu g{‘{(P)nu/(wp w

where
-] N[zfcg»-ug B -5
+f “{g, f”‘] av_, (3.13)

and from (3.8), (3.12) and (3.13) we have

e

Sl il §

2 2
HM/(wM-w | (3.14)

which is the equation for the first perturbation in eigenfrequency. If

N e st
hasvetad s

A=w, -0, |4 < ®y s (3.15)

from (3.14) we have

AR A3 (3

A= HM/2wM, (3.16)

; for the first perturbation in eigenfrequency. We have discussed first-order

0 A AN R i TP

perturbation theory only because that is all we are interested in here. For a

discussion of second-and higher-order perturbation theory see Ref.8.

B

The equation for the first perturbation of the eigeﬁvalue, i.e., Eq.(3.16),
is a very important relation that has numerous applications. Although it was
obtained from a Green's function formulation by assuming the existence of a
complete set of orthogonal eigensolutions, this particular relation can readily
be obtained without the use of a Green's tensor or, more importantly, a complete
set of orthogonal eigensolutions. In fact, the existence of only the particular

unperturbed eigensolution under consideration and a nearby perturbed state is

k* required. To see this consider the unperturbed Mth eigensolution, at eigen-

frequency Wys which, from (3.1) and (3.2), satisfies




o g (3.17)

along with the nearby perturbed solution at frequency w, which, from (3.1)

and (3.2), satisfies

2 £ n
=0 = .
uy=0, 31.,1. *‘31,,:. 0, (3.18)

ey ~n o
+p W
Mer T hea TP
where it is understood that (3.17) and (3.18) are independent of time. From

(3.17)1 and (3.18)l form the equation

l ”KLY,L +p wMuY)uY- (l<L,'Y,L+KL-Y,L +pw u,Y)u dvo—o. (3.19)

o

Performing the usual operations7, employing (3.3), (3.17)2 and (3.18)2 and the

divergence theorem in the usual manner, we obtain

2 2J‘ oM i ~b M_~IM LM _ =AM X
it v pumy v, i N O iy - Koyiy + 50 ‘Df. bt
o 3 o
5 M =n M
+;|, [{Y’LuY +.a;’ch ] @s_ . (3.20)
o

Since the perturbed solution is nearby the unperturbed solution, we have

M M
bbag o w, B sy g e w T, I < ] (3.21)

Substituting from (3.21) into (3.20), neglecting products of small quantities

and employing (3.9) - (3.11) and (3.13), we obtain
A = HM/ZQM, (3.22)

which is identical with Eq. (3.16). However, it should be emphasized that
although Eq. (3.16) does not require the existence of a complete set of ortho-
gonal eigensolutions, Eq. (3.12) does require the existence of such a set.

One consequence of this is that second and higher order perturbation theorya

cannot be obtained from the procedure presented in this paragraph.

DT IRk
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From Eq. (3.16) [or (3.22)] for the first perturbation in eigenfrequency,
we can obtain equations for the first perturbation in phase velocity and wave-
number by following the procedure outlined near the end of Sec.2 of Ref.2,

The equations are

(]
g
<

¢ =A/g,, 8 (3.23)

where

I
un
+
o

Ymy =8, 5

* : (3.24)

and VM and §M are the unperturbed phase velocity and wavenumber, respectively,
of the Mth eigensolution.
As an example of the application of (3.13), (3.15) and (3.16) [or (3.22)]

to a specific case consider a piezoelectric solid with traction free surfaces

and for simplicity a sufficiently high dielectric tensor that the normal com-

ponent of electric displacement can be taken to vanish. Let the solid be
subject to static biasing stresses, strains and/or electric fields applied in
such a way as not to affect the homogeneous mechanical or electrical boundary
conditions determining'the normal modes of vibration of the solid. Since the
Mth piezoelectric eigensolution perturbed by the bias is for traction free
boundary conditions and vanishing normal component of electric displacement,

we have

Nk =0, Nd =0 (3.25)

and under these circumstances, from (3.13), we find that HM takes the form
"'E M "'lAM J\ ~ M ~ o\M ¢ »"

= + 4 £ + + £f] 4 : 3.26 {

H, &j; Bk crr K pog+ 3 2 av, (3.26) ;
o o

The quantities NLifg and NLEﬁ in the surface integral in (3.26) are surface

perturbation terms, which are to be determined from the Mth eigensolution due

to the presence of the bias as are the terms in the volume integral in (3.26).
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For traction free and zero normal component of electric displacement boundary

conditions in the presence of the bias, we have

~£, ~ o~ A
NL(]&-C+1€C) =0, NL(,D: +.B:) =0, (3.27)
which with (3.26) and the divergence theorem yields
~ M ~M
H,=- J; “{c"c,n + @f’Ll av_, (3.28)
o

which is the form taken by the perturbation integral in this special but
important case. In (3.28) iic and 3? take the values given by the Mth ortho-
normal piezoelectric eigensolution g'é, %M in the presence of the bias and, conse-

quently, from (3.4) we have

~ ~ M A &M
+ f
'{L B chm(gY,R °RLC - 4
~ . M % ~M
L °try?y,R ~ “1&f,R i
the substitution of which in (3.28) yields
P M M A aM M A ~M 2M
G + - f dav . 5
' ;l, Crervy, 2%,z * 2°ree® 8%,z ~ it it W WY (3.30)

(o]

Thus, if the piezoelectric eigensolution and bias are known, the perturbed

frequency ®w can be determined from (3.15), (3.16) and (3.30).

4, perturbations from Electroelastic Solutions

In this section we obtain the equations for perturbations from solutions

of the linear electroelastic equations for small fields superposed on a bias

from a Green's function formulation of the equations of linear electroelasticity.

To this end we first write Egs. (2.9) and (2.10) in the form

o ““M
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i~ ~e (o 199
KLY,L"'I&-Y,L'D uY, (4.1)

1 +$:,L-o, (4.2)

)

-~ =
Ty = fovm e * S,

~

'31. = gLMCuC,M + %LM‘F,M’ (4.3)

and note that the definitions in (2.11) - (2.13) hold. 1In (4.1]) and (4.2) we
have taken the liberty of introducing the extra quantities ifY and jf, which
denote mechanical and electrical perturbation terms, respectively, and can,
in particular, represent the influence of small material viscosity. From

(2.11)1, (2.12)1 3 and (2.13) we note that

)
Snwc T SMenyy S T B (54

Before presenting the Green's function formulation of the linear electro-
elastic equations for small fields superposed on a bias, we show that the
vibrational eigensolutions satisfy an orthogorality condition because we need
this result to obtain the full perturbation theory. To this end consider two
eigensolutions of (4.1) and (4.2) minus the perturbation terms containing iiY
and Ef, one solution with eigenfrequency uh and the other with wv. They

satisfy the respective equations

~ o 2 ~
{Y’L + ol =0, "#,,L =0, @.5)
=V o2y ~\V
+pwu =0, & =0 (4.6)
v,z s e LN
From (4.5)1 and (4.6)1 form the equation
Lo 02 1. Vv _ =y 0.2 v
- =0, '
ilr [(1&£Y’L+p wdpuy- @y p o+ “’v“v)“}:(l av, 4.7)
o

S
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Performing the usual operations7, employing (4.3), (4.5)2 and (4.6)2 and the

divergence theorem in the usual manner, we obtain

V_ v S _ gV S N o i
i NLlﬁqu KLYU‘;-O- L? #chp'l dso (wv wp)J puwu”av_. (4.8)

o o
It should be noted that (4.8) can readily be obtained even if intermediate
surfaces of discontinuity exist. Clearly, from (4.8), for homogeneous boundary
conditions, we have
o,V 2
u dv_ =N § 4.9
J‘ ol ) By’ xo

o

which is the orthogonality condition for linear electroelastic vibrations
superposed on a bias.

Since i:Y and 3: are perturbation terms, the equations for the Green's
tensor9 for the linear electroelastic equations for small fields superposed

on a bias may be written in the form

~ 2
K:YL +p°w Gz =-6(p-Q)6?(, (4.10)
b
35L=- 8(p-0)6; , (4.11)
b

~

(o4 o
= +Q. f
v T SrymcCe,mt St m
(# 4 o o
& SrmcSe,m* %LMf’ = (4.12)

where equivalent quantities are defined as in the wording following Eq. (3.7).
In (4.10) - (4.12) we have assumed that all variables have a time dependence elwt
We now make the same assumptions in (4.1) - (4.3) and in the usual manner,

from (4.1) and (4.10) we form

~ ~e o 2 no~ o2 n n
J [(’&.Y,L+KLY,L+° w uY)GY (K:Y,Lw w GY+6(P-Q)6Y)uY]dV°(Q) ’ (4.13)

[+]

.
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where » = 1-3 and all variables in (4.13) have spatial dependence only. Per-
forming the usual operations7, employing (4.2), (4.3), (4.11) and (4.12) and

the divergence theorem in the usual manner, we obtain
£ ~ A =AU no mUA
w (P) = | NIK.G - Ku + JDLf - 591 as Q)
S

(o] fo
~ n ~e n.
+§|' [’S.Y,LGV‘“'&L,Lf 1 av_(Q) . (4.14)
(o]

Similarly, from (4.2) and (4.11]) we form

3 ze 4 4 x
-[ (B +8y, )E - @y 1 +8(2-0)3) av (), (4.15)

Yo

and performing the usual operations7, utilizing the divergence theorem and
employing (4.1), (4.3), (4.10) and (4.12), we obtain
= i 1 ~45  ~ 4 -~4
= f - + -
@ (P) g NL[.'bL Bo+k 6 -K p) ds @
o
~e 4 ~e 4
+ o £+ d G 4.16
I [ L,L KLY,LFY] Vo(Q) ( )
o
Equations (4.14) and (4.16) constitute the Green's function (or tensor) formu-
lation of the linear electroelastic equations for small fields superposed on
a bias. It turns out that for our purposes, although we envisage use for (4.14)
we do not envisage use for (4.16) because of the particular type of perturba-
tion problem in which we are interested.
We now assume that a complete set of eigensolutions J;, &P exists and

define orthonormal eigensolutions to our eigenvibration problem by
¢ = Ll : 4.17
AR VIR $my, it

We now expand the mechanical displacement Green's tensor Gz and electric

potential Green's vector £* in the forms
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n ‘Z
Gy " E M3 Bhf (4.18)

where a% and §p constitute orthonormal solution functions satisfying the
appropriate homogeneous form of (4.1) - (4.3) subject to the appropriate hamo-
geneous boundary conditions. Substituting from (4.18) into (4.10), employing
(4.12) and the homogeneous form of (4.10) for every y, contracting with §$,

integrating over V° and utilizing (4.9), we obtain

MS = 6‘:(1:)/(015 = aty (4.19)

Substituting from (4.18) and (4.19) into (4.14), we obtain

no E a:.(P)ﬁp/ (w;,zu. 7 w2) ’ (4.20)
where
e £ NLliLng(Q) -u kH v@Q + ﬁ'fu(Q‘ - wdp(Q)] das_ (Q) ]
= ~
+£ [T{Y,La’f{(m +I9:,L%“(Q)1 av_(©, (a.21)
and

kiv 1LYMC ‘EMLquM’
gy - T
ar = cz;mgg%,u’”;}mf,n ; (4.22)

The perturbation procedure is obtained from (4.20) by following the procedure
outlined in sec.3, after Eq. (3.11), and the resulting equation for the first

perturbation of the eigenvalue takes the form
~ : X 3 : -

A = HM/2wM (4.23) i
Again, as in Sec.3 and by following a procedure directly analogous to the one

employed in obtaining (3.22), it may readily be shown that (4.23) can be ob- !

tained without the use of a Green's tensor or a complete set of orthogonal

eigensolutions.
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